深度學習
本文描述了磚提供培訓和微調的深度學習模型。磚機器學習運行時提供的預構建深度學習的基礎設施,包括常見的深度學習圖書館像擁抱臉變形金剛,PyTorch TensorFlow, Keras。它也有圖書館像Petastorm Hyperopt, Horovod輕鬆規模常見的機器學習和深度學習步驟。,包括預配置的GPU支持包括司機和庫加速模型訓練和推理。
看到深度學習的最佳實踐在磚上。
大型語言模型(llm)
磚使它簡單的訪問並建立公開的大型語言模型。
磚等機器學習庫包括運行時的擁抱臉變形金剛和LangChain允許您將現有pre-trained模型或其他開源庫集成到您的工作流。從這裏,您可以利用磚平台的功能來調整llm使用您自己的數據域的性能更好。Beplay体育安卓版本
此外,磚為SQL用戶訪問提供了內置功能和試驗llm Azure OpenAI和OpenAI使用人工智能的功能。
擁抱的臉變形金剛
和擁抱的臉變形金剛磚可以擴展你的自然語言處理(NLP)批處理應用程序為大型的語言模型和調整模型應用程序。
擁抱的臉變形金剛
圖書館是預裝在磚運行時10.4 LTS毫升以上。許多流行的NLP模型GPU硬件上效果最好,所以你可能會獲得最佳性能使用最近的GPU硬件,除非你使用一個cpu上專門為使用優化模型。
LangChain
LangChain可用作為實驗MLflow味道LangChain客戶可以利用強大的工具和實驗直接從磚MLflow環境的跟蹤能力。beplay体育app下载地址
LangChain是一個軟件框架,旨在幫助創建應用程序利用大型語言模型(llm),並將它們與外部數據llm帶來更多的培訓環境。
磚運行時機器學習包括langchain
在磚運行時的13.1毫升以上。
PyTorch
PyTorch磚中包含運行時對機器學習和提供GPU加速的張量計算和高級功能構建深度學習網絡。您可以執行單一節點與PyTorch培訓或分布式數據磚。看到PyTorch。
Tensorflow
磚運行時機器學習包括TensorFlow TensorBoard,所以您可以使用這些庫沒有安裝任何包。TensorFlow支持深度學習和通用數值計算cpu、gpu和集群gpu。TensorBoard提供可視化工具來幫助您調試和優化機器學習和深度學習工作流。看到TensorFlow對於單節點和分布式訓練例子。
分布式訓練
因為深度學習模型數據,計算密集型分布式訓練可能是重要的。例如與Horovod使用集成的分布式深度學習,spark-tensorflow-distributor
TorchDistributor,明白了分布式訓練。