Databricks Runtime 6.0 for ML(不支持)
Databricks於2019年10月發布了這張圖片。
Databricks Runtime 6.0 for Machine Learning為機器學習和數據科學提供了一個現成的環境Databricks Runtime 6.0(不支持).Databricks Runtime ML包含許多流行的機器學習庫,包括TensorFlow, PyTorch, Keras和XGBoost。它還支持使用Horovod進行分布式深度學習訓練。
有關更多信息,包括創建Databricks Runtime ML集群的說明,請參見介紹Databricks運行時機器學習.
新功能
Databricks Runtime 6.0 ML是建立在Databricks Runtime 6.0之上的。有關Databricks Runtime 6.0中的新功能的信息,請參見Databricks Runtime 6.0(不支持)發行說明。
使用新的MLflow Spark數據源大規模查詢MLflow實驗數據
MLflow實驗的Spark數據源現在提供了一個標準API來加載MLflow實驗運行數據。這可以使用DataFrame api大規模查詢和分析MLflow實驗數據。對於給定的實驗,DataFrame包含run_ids、metrics、params、標簽、start_time、end_time、狀態和工件的artifact_uri。看到MLflow實驗.
改進
Hyperopt GA
Hyperopt on Databricks現在普遍可用。自公開預覽以來的顯著改進包括支持MLflow在Spark worker上的日誌記錄,正確處理PySpark廣播變量,以及使用Hyperopt選擇模型的新指南。我們還修複了日誌信息、錯誤處理、UI中的小錯誤,並使我們的文檔更易於閱讀。詳細信息請參見Hyperopt文檔.
我們已經更新了Databricks如何記錄Hyperopt實驗,以便您現在可以在Hyperopt運行期間通過傳遞度量來記錄自定義度量
mlflow.log_metric
函數(見log_metric).如果您想記錄除損失之外的自定義指標,這是非常有用的hyperopt.fmin
函數被調用。MLflow
增加MLflow Java客戶端1.2.0
MLflow現在被提升為頂級圖書館
升級的機器學習庫
Horovod從0.16.4升級到0.18.1
MLflow從1.0.0升級到1.2.0
蟒蛇分布從5.2.0升級到2019.03
刪除
Databricks ML模型導出被刪除。使用MLeap用於導入和導出模型。
在Hyperopt的以下屬性
hyperopt。SparkTrials
刪除:SparkTrials.successful_trials_count
SparkTrials.failed_trials_count
SparkTrials.cancelled_trials_count
SparkTrials.total_trials_count
它們被以下功能所取代:
SparkTrials.count_successful_trials ()
SparkTrials.count_failed_trials ()
SparkTrials.count_cancelled_trials ()
SparkTrials.count_total_trials ()
庫
以下部分列出了Databricks Runtime 6.0 ML中包含的與Databricks Runtime 6.0中包含的不同的庫。
頂級庫
Databricks Runtime 6.0 ML包括以下頂級庫:
Python庫
Databricks Runtime 6.0 ML使用Conda進行Python包管理,包括許多流行的ML包。下麵介紹Databricks Runtime 6.0 ML的Conda環境。
CPU集群上的Python 3
名字:databricks-ml渠道:-pytorch-違約依賴關係:-_libgcc_mutex = 0.1 =主要-_py-xgboost-mutex = 2.0 = cpu_0-_tflow_select = tripwire = mkl-absl-py =是0.7.1 = py37_0-asn1crypto = 0.24.0 = py37_0-阿斯特= 0.8.0 = py37_0-backcall = 0.1.0 = py37_0-補丁= 1.0 = py_2-bcrypt = 3.1.6 = py37h7b6447c_0-布拉斯特區= 1.0 = mkl-寶途= 2.49.0 = py37_0-boto3 = 1.9.162 = py_0-botocore = 1.12.163 = py_0-c-ares = 1.15.0 = h7b6447c_1001-ca證書= 2019.1.23 = 0-certifi = 2019.3.9 = py37_0-cffi = 1.12.2 = py37h2e261b9_1-chardet = 3.0.4 = py37_1003-單擊= 7.0 = py37_0-cloudpickle = 0.8.0 = py37_0-彩色光= 0.4.1 = py37_0-configparser = 3.7.4 = py37_0-密碼= 2.6.1 = py37h1ba5d50_0-周期計= 0.10.0 = py37_0-cython = 0.29.6 = py37he6710b0_0-decorator = 4.4.0 = py37_1-docutils = 0.14 = py37_0-entrypoints = 0.3 = py37_0-et_xmlfile = 1.0.1 = py37_0-瓶1.0.2 = = py37_1-freetype的= 2.9.1 = h8a8886c_1-未來= 0.17.1 = py37_0-恐嚇= 0.2.2 = py37_0-gitdb2 = 2.0.5 = py37_0-gitpython = 2.1.11 = py37_0-grpcio = 1.16.1 = py37hf8bcb03_1-gunicorn = 19.9.0 = py37_0-h5py = 2.9.0 = py37h7918eee_0-hdf5 = 1.10.4 = hb1b8bf9_0-html5lib = 1.0.1 = py_0-icu = 58.2 = h9c2bf20_1-idna = 2.8 = py37_0-intel-openmp = 2019.3 = 199-ipython = 7.4.0 = py37h39e3cac_0-ipython_genutils = 0.2.0 = py37_0-itsdangerous = 1.1.0 = py37_0-jdcal = 1.4 = py37_0-絕地= 0.13.3 = py37_0-jinja2 = 2.10 = py37_0-jmespath = 0.9.4 = py_0-jpeg = 9 b = h024ee3a_2-keras = 2.2.4 = 0-keras-applications = 1.0.8 = py_0-keras-base = 2.2.4 = py37_0-keras-preprocessing = 1.1.0 = py_1-kiwisolver = 1.0.1 = py37hf484d3e_0-krb5 = 1.16.1 = h173b8e3_7-libedit = 3.1.20181209 = hc058e9b_0-libffi = 3.2.1 = hd88cf55_4-libgcc-ng = 8.2.0 = hdf63c60_1-libgfortran-ng = 7.3.0 = hdf63c60_0-libpng = 1.6.36 = hbc83047_0-libpq = 11.2 = h20c2e04_0-libprotobuf = 3.8.0 = hd408876_0-libsodium = 1.0.16 = h1bed415_0-libstdcxx-ng = 8.2.0 = hdf63c60_1-libtiff = 4.0.10 = h2733197_2-libxgboost = 0.90 = he6710b0_0-libxml2 = 2.9.9 = hea5a465_1-libxslt = 1.1.33 = h7d1a2b0_0-llvmlite = 0.28.0 = py37hd408876_0-lxml = 4.3.2 = py37hefd8a0e_0-尖吻鯖鯊= 1.0.10 = py_0-減價= 3.1.1 = py37_0-markupsafe = 1.1.1 = py37h7b6447c_0-mkl = 2019.3 = 199-mkl_fft = 1.0.10 = py37ha843d7b_0-1.0.2 mkl_random = = py37hd81dba3_0-模擬= 3.0.5 = py37_0-ncurses = 6.1 = he6710b0_1-networkx = 2.2 = py37_1-忍者= 1.9.0 = py37hfd86e86_0-鼻子= 1.3.7 = py37_2-numba = 0.43.1 = py37h962f231_0-numpy = 1.16.2 = py37h7e9f1db_0-numpy-base = 1.16.2 = py37hde5b4d6_0-olefile = 0.46 = py37_0-openpyxl = 2.6.1 = py37_1-openssl = 1.1.1b = h7b6447c_1-熊貓= 0.24.2 = py37he6710b0_0-paramiko = 2.4.2 = py37_0-parso = 0.3.4 = py37_0-pathlib2 = 2.3.3 = py37_0-容易受騙的人= 0.5.1 = py37_0-pexpect = 4.6.0 = py37_0-pickleshare = 0.7.5 = py37_0-枕頭= 5.4.1之前= py37h34e0f95_0-皮普= 19.0.3 = py37_0-厚度= 3.11 = py37_0-prompt_toolkit = 2.0.9 = py37_0-protobuf = 3.8.0 = py37he6710b0_0-psutil = 5.6.1 = py37h7b6447c_0-psycopg2 = 2.7.6.1 = py37h1ba5d50_0-ptyprocess = 0.6.0 = py37_0-py-xgboost = 0.90 = py37he6710b0_0-py-xgboost-cpu = 0.90 = py37_0-pyasn1 = 0.4.6 = py_0-pycparser = 2.19 = py37_0-pygments = 2.3.1 = py37_0-pymongo = 3.8.0 = py37he6710b0_1-= py37h7b6447c_0 1.3.0 pynacl =版本-pyopenssl = 19.0.0 = py37_0-pyparsing = 2.3.1 = py37_0-pysocks = 1.6.8 = py37_0-python = 3.7.3 = h0371630_0-python-dateutil = 2.8.0 = py37_0-python編輯器的1.0.4 = = py_0-pytorch-cpu = 1.1.0 = py3.7_cpu_0-pytz = 2018.9 = py37_0-pyyaml = 5.1 = py37h7b6447c_0-readline = 7.0 = h7b6447c_5-= 2.21.0 = py37_0請求-s3transfer = 0.2.1 = py37_0-scikit-learn = 0.20.3 = py37hd81dba3_0-scipy = 1.2.1 = py37h7c811a0_0-setuptools = 40.8.0 = py37_0-simplejson = 3.16.0 = py37h14c3975_0-singledispatch = 3.4.0.3 = py37_0-6 = 1.12.0 = py37_0-smmap2 = 2.0.5 = py37_0-sqlite = 3.27.2 = h7b6447c_0-sqlparse = 0.3.0 = py_0-statsmodels = 0.9.0 = py37h035aef0_0-彙總= 0.8.3 = py37_0-tensorboard = 1.13.1 = py37hf484d3e_0-tensorflow = 1.13.1 = mkl_py37h54b294f_0-tensorflow-base = 1.13.1 = mkl_py37h7ce6ba3_0-tensorflow-estimator = 1.13.0 = py_0-tensorflow-mkl = 1.13.1 = h4fcabd2_0-termcolor = 1.1.0 = py37_1-tk = 8.6.8 = hbc83047_0-torchvision-cpu = 0.3.0 = py37_cuNone_1-tqdm = 4.31.1 = py37_1-traitlets = 4.3.2 = py37_0-urllib3 = 1.24.1 = py37_0-virtualenv = 16.0.0 = py37_0-wcwidth = 0.1.7 = py37_0-webencodings = 0.5.1 = py37_1-websocket-client = 0.56.0 = py37_0-werkzeug = 0.14.1 = py37_0-輪= 0.33.1 = py37_0-打包= 1.11.1 = py37h7b6447c_0-xz = 5.2.4 = h14c3975_4-yaml = 0.1.7 = had09818_2-zlib = 1.2.11 = h7b6447c_3-zstd = 1.3.7 = h0b5b093_0-皮普:-argparse = = 1.4.0-databricks-cli = = 0.9.0-碼頭工人= = 4.0.2-fusepy = = 2.0.4-大猩猩= = 0.3.0-horovod = = 0.18.1-hyperopt = = 0.1.2.db8-matplotlib = = 3.0.3-mleap = = 0.8.1-mlflow = = 1.2.0-nose-exclude = = 0.5.0-pyarrow = = 0.13.0-querystring-parser = = 4-seaborn = = 0.9.0-tensorboardx = = 1.8前綴:/磚/ conda / env / databricks-ml
Java和Scala庫(Scala 2.11集群)
除了Java和Scala庫在Databricks Runtime 6.0, Databricks Runtime 6.0 ML包含以下jar:
組ID |
工件ID |
版本 |
---|---|---|
com.databricks |
spark-deep-learning |
1.5.0-db5-spark2.4 |
com.typesafe.akka |
akka-actor_2.11 |
2.3.11 |
ml.combust.mleap |
mleap-databricks-runtime_2.11 |
0.14.0 |
ml.dmlc |
xgboost4j |
0.90 |
ml.dmlc |
xgboost4j-spark |
0.90 |
org.graphframes |
graphframes_2.11 |
0.7.0-db1-spark2.4 |
org.mlflow |
mlflow-client |
1.2.0 |
org.tensorflow |
libtensorflow |
1.13.1 |
org.tensorflow |
libtensorflow_jni |
1.13.1 |
org.tensorflow |
spark-tensorflow-connector_2.11 |
1.13.1 |
org.tensorflow |
tensorflow |
1.13.1 |
org.tensorframes |
tensorframes |
0.7.0-s_2.11 |